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Abstract - The Monte Carlo method is applied to diverg-
ing field problems. The computational effort-expressed
in this work by the number of steps in random walks-is
related to the relative space potential, the pre-
specified walk termination distance and the degree of
field nonuniformity in the gap. To obtain potential and
field distributions in a given system, equations for
these quantities are developed at neighbouring space
points using Green's function. The accuracy of the
algorithm is markedly enhanced by seeking the optimal
spacing of those neighbouring points. The present
technique is satisfactorily compared with the charge
simulation method in a case study on hemispherically
capped rod plane gap.

I. INTRODUCTION

Calculations of potentials or fields are needed
for many problems in electrical power engineering as
well as in heat conduction and fluid dynamics. The
mathematical techniques needed are well known but are
often difficult to apply in the complicated three-
dimensional geometries that arise in practice. It is
difficult to use finite element or finite difference
methods toc calculate electric potentials or fields near
a high voltage transmission tower, or stress control
fitting, because of the large number of mesh points or
nodes needed to give an adequate representation of the
geometry. The charge simulation method may likewise
require the use of a large number of trial charges. The
Monte Carlo method gives a convenient and flexible
means of tackling these and similar problems in elec-
trical power engineering [1,2,3] Mathematically, the
Monte Carlo method solves the Dirichlet's problem by
finding the potential and gradient which satisfies
Laplace's equation within a given region and takes
specified values on its boundary.

Basically, if the potential atua given point in
space is required, a series of random walks is con-
structed starting at that point and reaching for a
boundary where the potential is known. The average of
the potentials gathered by this series of walks is a
statistical estimate of the unknown potential of the
point.

II. IMPLEMENTATION OF MONTE CARLO METHOD

The Monte Carlo method is implemented by initia-
ting a series of random walks from the point in space
where potential 1is to be evaluated. Each walk i will
end when it reaches a boundary of a known potential
Vr;. Based on N random walks the estimated potential
of the point is

N
I v (1)

In the fleating random walk the length of the step
is equal to the distance between the point and the
nearest boundary. Random number generators determine
the direction of the step.
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The floating random walk procedure is applied to
a three dimensional geometry by assuming a homogeneous
spherical region with center at (X,y,z) and with radius
r. The exact solution for the potential distribution
v(r,w,¢) on the boundary based on the mean value
theorem is as follows:
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vix,y,z) =

In which G = 0.5(1-cos¢)

where w and ¢ are, respectively, the polar coordinate
angle and the cone angle in a spherical coordinate
system. The functions F and G are probability distribu-
tion corresponding to w and ¢.

A probabilistic interpretation of egms. (2) in-
dicates that a random walk instantaneously at (xi,yi,
zi), will step to a new position on the circumference
of the surrounding sphere in accordance with the pro-
babilities F and G,As N 7, the solution obtained
from the floating random walk technique will approach
the exact solution. A boundary is said to have been
reached if the walk comes within a small distance H
from it [4].

The potential Vp of a point at a position rp is
related to that of a point at I, by [4]
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where, rj is the first step in the ith walk; Vy; as in
eg. (1) is the potential of the boundary reached by
the ith walk; w is a weight function derived from
Green's function as [4]

2
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where a is the distance between the initial point at
r, and the nearest boundary.
Therefore, the electric field is derived from
eq. (3) to be
-1 N
E =-VW =-— I Vw. V_, (5)
P P N =1 ri

i

The present work shows that estimated potentials and
fields at meighbouring points are sensitive to the
distance between points ro and Iy and optimal selection
of that distance is, thus, called for.

III. SENSITIVITY ANALYSIS

The time and cost of computation using a monte
carlo method depends directly on the product of the
predetermined number of walks N by the average number
of steps per walk Sy. The latter, in turn, depends on:-
(1) The relative potential itself at the location in

question.

88CH2565-0/88/0000-1717$01.00 © 1988 IEEE



(2) The degree of field nonuniformity.
(3) The walk termination distance H.

In order to investigate the effects of the above
factors with certainty a standard analytically-solved

configuration is chosen, namely, the case of coaxial ;
cylinders. ~
3
The potential,at a point in a coaxial cylinder )
space is successively computed as the number of walks z
is increased. The rootmean square sampling error in »
the estimated potential V, decreases as the number of ﬂ
walks is increased according to [5]
N
1 2 2 b
S=[z (V. -vVv)/(N-1)] (€)
N ._ ry r
i=1
3
[

The effect of N is manifested in Fig. (1) plotted
for a coaxial system of outer-to-inner radii ratio
of P=50. The computed potentials are fluctuating about
its known true value.
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Fig. (1) Potential estimation by Monte Carlo 3
A. Relation of the Number of Steps Walk to Potential
12}
The relation between the number of steps per walk
Sw and the relative potential V is sought by applying ;

the Monte Carlo algorithm at points of different rela-
tive potentials in the range O to 1.0. The average
number of steps per walk was seen to be maximum at 8r \{),50
Vv=0.5 and decreases towards zero when V approaches the

zero or 1.0 values. Based on the fact that the variance

of a binomial distribution is 6(1-8) where € is the

probability of success [5], and bearing in mind that 4
Sw reflects the"hesitation" in reaching a final bound-

ary, the quantity Sw is assumed to be related to space

potential by

e

/] i
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Sw =K v(l - v) (7)

where v is the relative space potential, and K is a
constant. Several computer runs at v = 0.5 for various v (p.w)
cases were made and the average Sw is used to compute
K. The variation of Sw with space potential for differ-
ent field nonuniformity (J) and different termination

distance H are shown in Figs.(2) to (3). Fig. (3) Effect of potential and H on number of random

steps
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B. Relation of Sw to the Degree of Field Nonuniformity

The relation between the number of steps per walk
Sw at a relative space potential of 0.5 (which is re-
cognized as the maximum number of steps per walk Sw of
a given case) and the ratio § could be fitted to the
semi~logarithmic relationship:

Sw =a log (y) +b (8)

It is seen in Fig. (4) that a is appoximately
constant for different termination distances, and thus
the relation between Sw and log (¥) for various values
of termination distances appear as parallel straight
lines.
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Fig. (4) Variation of number steps with field nonuni-

formity

C. Relation of Sw to the Termination Distance H

The relation between the maximum number of steps
per walk Sw (occurring at a relative space potential
of 0.5) and the termination distance H could also be
fitted to the semi-logarithmic straight line equation.

Sw = c lag (H) + 4 (9)

It is noticed in Fig. (5) that c for different
values of Y is approximately unchanged while the con-
stant d has a strong dependence on the degree of field
non-uniformity .

IV. OPTIMAL SELECTION OF
NEIGHBOURING POINTS

The use of Green's function implies that if a
series of random walks gives an estimate of a relative
potential v at a point r it also contains information
about the potentials at points in the neighbourhood of
r,namely rp as explained earlier iniegn. (3).

As rp approaches the surface of the sphere of the first
step in the walk the estimate Vp becomes dominated by

a few random walks with large weighting factors and

its aeccuracy falls’off [4). At distances rp-r larger
than half the radius of the first step the accuracy
also diminishes markedly.
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Fig. (5) Variation of number of steps with H.

In this work .an attempt is made to detect the
influence of the spacing between r and rp, on the
accuracy of the potential estimation. This attempt will
help determine the optimal choice of the sequence of
points whenever the potential distribution along a
particular-line in space is required. Fig.(6) shows, for
a case of known potential distribution, namely coaxial
cylinders, the variation of the error in estimated
relative space potential with the spacing 2 = r_-r.
It appears that for sufficiently low spacing Z the
potential error is large and negative (i.e. the
estimated potential is less than its true value). The
error decreases in magnitude until it vanishes in the
shown case at 2 = 15%. Thereafter, the error becomes
positive and continues to increase with Z. The value
of Z at which the potential error is zero is recorded
for many cases.

Fig. (7) shows that the relation between the
optimum distance 2y and the relative space potential v
is nearly linear over the potential range of 0.7-1.0
which is considered to be of prime importance to high
voltage technology. At potentials below 0,7 the rela-
tionship becomes slightly nonlinear.

The above analysis was by necessity performed on
an analytically solvable case namely the case of
coaxial cylinders. The applicability of the computed
optimal distances between neighbouring points is sub-
stantiated-towards the end of this paper-when a general
non analytically solvable case is treated.

V. OPTIMAL DISTANCES FOR
FIELD COMPUTATION

The electric field at any point in space can be
evaluated according to eq. (5) which is based on the
choice of a point rp in the neighbourhood of the
target point r. This choice is also found to influence
the accuracy of the computed field _significantly
Fig. (8) illustrates-for a typical case-how the above
choice of distance Z affects the error in the compu-
ted field.
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Based on the standard case of coaxial cylinder
several cases were run to estimate the optimal dis-
tance Ze. The results are shown in Fig. (9) where Zg is
expressed as a percentage of the length of the first
step in a random walk. Itisnoticed that as the level of
field non uniformity increases optimal distances tend
to decrease. On the boundary when the potential is unity
the Monte Carlo method fails to estimate the field.
This is manifested in Fig. (9)-at V=1- by calling for
Ze to be equal to zero a fact which renders Green's
function impossible to apply.
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1720



VI. STUDY CASE

It is meant to verify the ability of the Monte
Carlo method, in general, and the presently developed
improvements, in particular, to handle a typical high
voltage problem. The rod-to-plane gap, one of the most
basic arrangements in high voltage research, is chosen
for this purpose. This non-uniform field configuration
has been a suitable tool for experimental observation
due to the local confinement of prebreakdown ionization
around the stressed electrode. Field knowledge will
certainly help explain many gaseous ionization phenom-
ena and elucidate the processes of gas breakdown. The
solution is compared to those given by the Charge
simulation method and also the tank model experimental
technique.

A. Gap Arrangement

The rod-to-plane gap is seen in Fig. (10). The
rod electrode is standardized as a cylindrical shaft
with a hemispherical tip of equal diameter of 2.

Critical field

line

-

h=0 ?
i

Fig. (10) rod-to-plane gap
Table I The potential and field distributions on the
critical field line for G = 200
?iiiance Charge simulation ]improved Monte Carlo method
biane ref.[6]
v(p.u) Ep(p,u) v{p.u) Ep(p.u)
1199.9 0.9463 0.4884 0.9467 0.4981
199.8 0.9015 0.4118 0.9343 0.4119
199.7 0.8634 0.3528 0.8657 0.3517
199.6 0.8305 0.3064 0.8514 0.3040
199.5 0.8018 0.2691 0.7946 0.2673
199.4 0.7765 0.2387 0.8019 0.2359
199.3 0.7539 0.2136 0.7612 0.2115
199.2 0.7336 0.1927 0.7437 0.1904
199.1 0.7157 0.1749 0.7287 0.1750
199.0 0.6985 0.1597 0.7101 0.1601
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Table II Comparison of the potential calculated by

three methods. For G=160

,?;z;ance Charge simulation | improved Monte | Tank

ref. (6] Carlo method model
plane
159.9 0.9453 0.9567 0.933
159.8 0.8996 0.9133 0.897
159.7 0.8607 0.8567 | ~———-
159.6 0.8272 0.8567 | =~=--
159.5 0.7980 0.8033 0.824
159.4 0.7721 0.7667 | ~=——= -
159.3 0.7491 0.7700 | ===—--
159.2 0.7285 0.7267 | =~==--
159.1 0.7097 0.7200 | —-=———-
159.0 0.6927 0.7167 0.725
158.0 0.5779 0.5733 ———
157.0 0,5125 0.5233 0.556
156.0 0.4680 0.4967 | ~==--
155.0 0.4349 0.4400 0.483

The Charge simulation method was applied to the study
arrangement by Abou-Seada and Nasser [6]. They used
one point charge located at the center of the hemis-
pherical portion of the boundary and a nine semi~
infinite line charges located along the axis of the
cylindrical portion. Also seven boundary points were
selected.

Meanwhile, a camputer program is written which
applies the principles and recommendations reached in
this paper to improve the Monte Carlo application. A
floating random walk procedure was followed in which
the optimal spacing among neighbouring points as deter-
mined above is put to use.

In Table I it is shown that the results of the
Monte Carloc method are very close to those obtained by
the Charge simulation method. The computing effort
made during the present Monte Carlo application is
relatively very small. Typically, the determination of
the potential and field at any one point-near the rod
tip-required a total of 100 walks equivalent to about
2 seconds on a VAX-11/780 computer.

In Table II a comparison is made among the results
taken from the Charge &imulation method, the present
approach, and those measured experimentally using a
tank model for a gap ratio of 160 [6]. It appears that
the results obtained with the present technique are
even closer to those of the tank model than the results
of the Charge simulation method.

VII. CONCLUSIONS
(1) The computational effort expressed primarily by the
number of steps per walk is found to be strongly
dependent on several factors, namely, the relative
space potential at the location in question, the
degree of field nonuniformity and walk termination
distance.

(2) The.maximum number of steps per walk is encountered
at a relative space potential of 0.5 and decreases
towards zero when the potential approaches zero or

1 values.
(3)

The maximum number of steps per walk increases
linearly with the logarithm of the field nonuni-

formity factor.
(4)

The maximum number of steps per walk increases
linearly with the logarithm of the termination

distance.



(5) The use of Green's function gives direct estimates
of fields and allows each random walk to contribute
directly to estimates of the potential and field
at more than one point.

(6) The error in the estimated potential and field of
a neighbouring point is minimum at some optimal
distance between the target point ro and that
neighbouring point rp.

(7) The optimality results obtained with coaxial sys-
tems are found to be very well applicable in other,
non-analytically solvable, three-dimensional sys=
tems such as a rod-plane gap.

(8) Excellent agreement is obtained when the results of
the present technique are compared to those of the
charge-simulation method as applied to a hemi-
spherically capped rod-plane gap.
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