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Abstract  - The Monte Carlo method is applied t o  diverg- 
ing f i e l d  problems. The computational effort-expressed 
i n  t h i s  work by the number of s t eps  i n  random walks-is 
r e l a t ed  t o  the  r e l a t i v e  space po ten t i a l ,  t he  pre- 
spec i f ied  walk termination d is tance  and the  degree of 
f i e l d  nonuniformity i n  the  gap. To obtain po ten t i a l  and 
f i e l d  d i s t r ibu t ions  i n  a given system, equations f o r  
these quan t i t i e s  a r e  developed a t  neighbouring space 
poin ts  using Green's function. The accuracy of the 
algorithm i s  markedly enhanced by seeking the optimal 
spacing 01 those neighbouring poin ts .  The present  
technique is s a t i s f a c t o r i l y  compared with the  charge 
simulation method i n  a case study on hemispherically 
capped rod plane gap. 

I. INTRODUCTION 

Calculations of po ten t i a l s  o r  f i e l d s  a re  needed 
f o r  mmy problems i n  e l e c t r i c a l  power engineering a s  
well a s  i n  hea t  conduction and f l u i d  dynamics. The 
mathematical techniques needed a r e  well known but  a r e  
Gften d i f f i c u l t  t o  apply i n  the  complicated three- 
dimensional geometries t h a t  a r i s e  i n  prac t ice .  It i s  
d i f f i c u l t  t o  use f i n i t e  eleiaent o r  f i n i t e  d i f fe rence  
methods t o  ca lcu la te  e l e c t r i c  po ten t i a l s  o r  f i e l d s  near 
a high voltage transmission tower, o r  s t r e s s  cont ro l  
f i t t i n g ,  because of the  la rge  number of mesh poin ts  o r  
nodes needed t o  give an adequate representation of the  
geometry. The charge simulation method may likewise 
requi re  the  use of a l a rge  number of t r i a l  charges. The 
Monte Carlo method gives a convenient and f l e x i b l e  
means of tack l ing  these and s imi la r  problems i n  elec- 
t r i c a l  power engineering [1,2,31 Mathematically, the  
Monte Carlo method solves the  Di r i ch le t ' s  problem by 
finding the  po ten t i a l  and gradien t  which s a t i s f i e s  
Laplace's  equation within a given region and takes  
Specified values on i t s  boundary. 

Basically,  i f  the  po ten t i a l  a t  a given poin t  i n  
space is required,  a s e r i e s  of random walks i s  con- 
s t ruc t ed  s t a r t i n g  a t  t h a t  po in t  and reaching f o r  a 
boundary where the  po ten t i a l  is known. The average of 
the  po ten t i a l s  gathered by t h i s  s e r i e s  of walks i s  a 
s t a t i s t i c a l  estimate of the  unknown po ten t i a l  of t he  
point.  

11. IMPLEMENTATION OF MONTE CARLO METHOD 

The Monte Carlo method is implemented by i n i t i a -  
t i n g  a s e r i e s  of random walks from the  p i n t  i n  space 
where po ten t i a l  is t o  be evaluated. Each walk i w i l l  
end when it reaches a boundary of a known po ten t i a l  
Vri. Based on N random walks the  es t imated-poten t ia l  
of the  poin t  is 

In  the  f l ea t ing  random walk the  length of the s t ep  
is equal t o  the  d is tance  between the  poin t  and the  
neares t  b o ~ d a r y .  Random number generators determine 
the  d i r ec t ion  of the s tep .  
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The f loa t ing  random walk procedure i s  applied t o  
a th ree  dimensional geometry by assuming a homogeneous 
spher ica l  region with center  a t  (x,y,z) and with rad ius  
r. The exact so lu t ion  f o r  t he  po ten t i a l  d i s t r ibu t ion  
v(r,w,Q) on the  boundary based on the  mean value 
theorem i s  a s  follows: 

1 1  
v(x ,y ,z )  = I v(r,w,$) dF dG ( 2 )  

0 0  

In  which F = w/2T , G = 0.5 ( l-cos$) 

where w and 9 a re ,  respec t ive ly ,  the  polar  coordinate 
angle and the  cone angle i n  a spher ica l  coordinate 
system. The functions F and G a r e  probabi l i ty  d i s t r ibu -  
t i o n  corresponding t o  w and $. 

A p robab i l i s t i c  i n t e rp re t a t ion  of eqns. (2)  in- 
d i ca t e s  t h a t  a random walk instantaneously a t  ( x i , y i ,  
zil., w i l l  s t ep  t o  a new pos i t ion  on the  circumference 
of the  surrounding sphere i n  accordance with the  pro- 
b a b i l i t i e s  F and G.As  N -, the  so lu t ion  obtained 
from the  € loa t ing  random walk technique will approach 
the  exact so lu t ion .  A boundary i s  sa id  t o  have been 
reached i f  the  walk comes within a small dis tance  H 
from it [41. 

The po ten t i a l  Vp of a p i n t  a t  a pos i t ion  rp is 
re l a t ed  t o  t h a t  of a poin t  a t  ro by [41 

N I 

v = L  2 w ( r  ,r  , r . )  Vri ( 3 )  
P N i Z l  P o =  

where, r i  i s  the  f i r s t  s t ep  i n  the  i t h  walk; V r i  a s  i n  
eq. (1) is the  po ten t i a l  of the  boundary reached by 
the  i t h  walk; w is a weight function derived from 
Green's function a s  [41 

a ( a2 -  tr -rol 2 

w =  
Irp - = ; i 3  

(4) 

where a is the  d is tance  between the  i n i t i a l  po in t  a t  
ro and the  neares t  boundary. 

Therefore, the  filectric f i e l d  i s  derived from 
eq- (3)  t o  be 

-1 
P P i= l  r i  E = -vV = -  VW. V (5) 

The present  work shows t h a t  estimated po ten t i a l s  and 
f i e l d s  a t  neighbouring poin ts  a r e  sens i t i ve  t o  the 
d is tance  between po in t s  ro and rp and optimal se lec t ion  
of t h a t  d i s tance  i s ,  thus ,  ca l l ed  t o r .  

111. SENSITIVIm ANALYSIS 

The time and c o s t  of computation using a monte 
ca r lo  method depends d i r e c t l y  on the  product of the  
predetermined number of walks N by the  average number 
of s t eps  per walk Sw. The l a t t e r ,  i n  t u rn ,  depends on:- 
(1) The r e l a t h e  po ten t i a l  i t s e l f  a t  the  loca t ion  in 

que s t  ion. 
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( 2 )  The degree of f i e l d  nonuniformity. 
(3) The walk termination d is tance  H. 

In  order t o  inves t iga te  the  e f f e c t s  of the  above 
f ac to r s  with ce r t a in ty  a standard analytically-solved 
configuration is chosen, namely, the  case of coaxia l  
cy l inders .  

The po ten t i a1 , a t  a po in t  i n  a coaxial  cylinder 
space is successively computed as the number of walks 
i s  increased. The rootmean square sampling e r r o r  i n  
the  estimated po ten t i a l  V, decreases as the  number of 
walks is increased according t o  [SI 

(61 

Theef fec to f  N i s  manifested i n  Fig. (1) p lo t t ed  
f o r  a coaxial  system of outer-to-inner r a d i i  r a t i o  
of @<SO. The computed po ten t i a l s  a r e  f luc tua t ing  about 
i t s  known t r u e  value. 

y * 50 
v = 0.5 
r ~ 1 . 0  

- 
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> 
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Fig. (1) Potent ia l  estimation by Monte Carlo 

A. Relation of the  Number of Steps Walk t o  Poten t ia l  

The r e l a t i o n  between the  number of s t eps  per walk 
Sw and the  r e l a t i v e  po ten t i a l  V is sought by applying 
the  Monte Carlo algorithm a t  poin ts  of d i f f e r e n t  r e l a -  
t i v e  po ten t i a l s  i n  the  range 0 t o  1.0. The average 
number of s t eps  per walk w a s  seen t o  be maximum a t  
V=0.5 and decreases towards zero when V approaches the  
zero o r  1.0 values. Based on the  f a c t  t h a t  the  variance 
of a binomial d i s t r ibu t ion  i s  e(1-8) where 8 is the  
probabi l i ty  of success [SI,  and bearing i n  mind t h a t  
Sw r e f l e c t s  the"hes i ta t ion"  i n  reaching a f i n a l  bound- 
ary, the  quant i ty  Sw is assumed t o  be r e l a t ed  t o  space 
po ten t i a l  by 

SW = K V ( l  - V) (7) 

where v is the  r e l a t i v e  space po ten t i a l ,  and K i s  a 
constant.  Several computer runs a t  v = 0.5 f o r  various 
cases  were made and the average Sw is used t o  compute 
K. The var i a t ion  of Sw with space po ten t i a l  f o r  d i f f e r -  
e n t  f i e l d  nonuniformity (@) and d i f f e ren t  termination 
d is tance  €I a r e  shown i n  Figs.(2) t o  ( 3 ) .  

0 0.4 0.6 OQ 1 

v ( p . u )  

Fig. ( 2 )  Ef fec t  of po ten t i a l  and $ on number of random 
s t eps  
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Fig. ( 3 )  Effec t  of po ten t i a l  and H on number of random 
s t eps  
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B. 

The r e l a t ion  between the  number of s teps  per walk 
Sw a t  a r e l a t i v e  space po ten t i a l  of 0.5 (which i s  re -  
cognized a s  the  maximum number of s t eps  per walk Sw of 
a given case) and the  r a t i o  J, could be f i t t e d  t o  the  
semi-logarithmic re la t ionship :  

Sw = a log ($1 + b ( 8 )  

I t  is seen i n  Fig. (4) t h a t  a i s  appoximately 
constant f o r  d i f f e r e n t  termination d is tances ,  and thus 
the r e l a t ion  between Sw and log ($1 f o r  various values 
of termination d is tances  appear a s  p a r a l l e l  s t r a i g h t  
l i nes .  
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Fig. (4) Variation of number s t eps  with f i e l d  nonuni- 
formity 

C .  Relation of Sw t o  the  Termination Distance H 

The r e l a t i o n  between the  maximum number of s t eps  
per walk Sw (occurring a t  a r e l a t i v e  space po ten t i a l  
of 0.5) and the  termination d is tance  H could a l s o  be 
f i t t e d  t o  the  semi-logarithmic s t r a i g h t  l i n e  equation. 

Sw = c log (H) + d (9)  

I t  is noticed i n  Fig. (5)  t h a t  c f o r  d i f f e r e n t  
values of $ is approximately unchanged while the con- 
s t a n t  d has a strong dependence on the  degree of f i e l d  
non-uniformity $. 

I V .  OPTIMAL SELECTION OF 
NEIGHBOURING POINTS 

The use of Green's function implies t h a t  i f  a 
series of random walks g ives  an estimate of a r e l a t i v e  
po ten t i a l  v a t  a po in t  r it a l s o  conta ins  information 
about the  po ten t i a l s  a t  poin ts  i n  the  neighbourhood of 
r,namely rp a s  explained e a r l i e r  in..eqn. ( 3 ) .  

A s  rp approaches the  surface of the  sphere of the  f i r s t  
s t ep  i n  the  walk the  estimate Vp becomes dominated by 
a few random walks with la rge  weighting f ac to r s  and 
i t s  accuracy f a l l s  off  [ 4 1 .  A t  d i s tances  rp-r l a rge r  
than ha l f  t he  rad ius  of the  f i r s t  s t ep  the  accuracy 
a l s o  diminishes markedly. 

10-4 10-3 10-2 104 

H ( p . u )  

Fig. 15) Variation of number of s t eps  with H. 

In t h i s  work an attempt is made t o  de t ec t  the  
influence of t he  spacing between r and rp on the  
accuracy of the  po ten t i a l  estimation. This attempt w i l l  
help determine the  optimal choice o f  the  sequence of 
po in ts  whenever the po ten t i a l  d i s t r ibu t ion  along a 
pa r t i cu la r  l i n e i n  s p a c e i s  required.  F ig . (6)  shows, f o r  
a case of known po ten t i a l  d i s t r ibu t ion ,  namely coaxial  
cy l inders ,  t he  var ia t ion  of t he  e r r o r  i n  estimated 
r e l a t i v e  space po ten t i a l  with the  spacing Z = r -r. 
It appears t h a t  f o r  su f f i c i en t ly  low spacing Z tEe 
po ten t i a l  e r r o r  i s  l a rge  and negative (i.e. the  
estimated po ten t i a l  is less than i t s  t r u e  va lue) .  The 
e r r o r  decreases i n  magnitude u n t i l  it vanishes i n  the 
shown case a t  2 = 15%. Thereafter,  the  e r r o r  becomes 
pos i t ive  and continues t o  increase with Z .  The value 
of Z a t  which the  po ten t i a l  e r ro r  is zero is recorded 
f o r  many cases.  

Fig. (7)  shows t h a t  t he  r e l a t ion  between the  
optimum dis tance  Zv and the  r e l a t i v e  space po ten t i a l  v 
is nearly l i nea r  over t he  po ten t i a l  range of 0.7-1.0 
which is considered t o  be of prime importance t o  high 
voltage technology. A t  po ten t i a l s  below 0.7 the  re la -  
t ionship  becomes s l i g h t l y  nonlinear. 

The above ana lys i s  was by necess i ty  performed on 
an ana ly t i ca l ly  solvable case namely the  case of 
coaxia l  cylinders.  The app l i cab i l i t y  of the  computed 
optimal d i s tances  between neighbouring poin ts  is sub- 
stantiated-towards the  end of t h i s  paper-when a general 
non ana lp t i ca l ly  solvable case is t rea ted .  

V. OPTIMAL DISTANCES FOR 
FIELD COMPUTATION 

The e l e c t r i c  f i e l d  a t  any po in t  i n  space can be 
evaluated according t o  eq. (5)  which is based on the 
choice of a poin t  rp i n  the neighbourhood of t he  
t a r g e t  po in t  r. This choice is a l s o  found t o  influence 
the  accuracy of the  computed 
Fig. (8) i l l u s t r a t e s - fo r  a t yp ica l  case-how the  above 
choice of d i s tance  Z a f f e c t s  t he  e r r o r  in the  compu- 
t e d  f i e l d .  

f i e l d  - s i g n i f i c a n t l y  
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Fig. (6) Computed po ten t i a l  e r ro r  

Effect of terminat ion 

Fig. (7 )  Optimal dis tance  for po ten t i a l  estimation 

v.200 
v = O .  8 

Fig. (8) Computed f i e l d  e r ro r  

Based on the  standard case of coaxial  cylinder 
severa l  cases were run t o  estimate the  optimal dis-  
tance Ze. The r e s u l t s  a r e  shown i n  Fig. 
expressed a s  a percentage of t he  length of the  f i r s t  
Step i n  a random walk. I t  i s n o t i c e d  t h a t  a s  the l eve l  of 
f i e l d  non uniformity increases optimal d i s tances  tend 
t o  decrease. On the  boundary when the  po ten t i a l  i s  unity 
the  Monte Carlo method f a i l s  t o  estimate the  f i e l d .  
This is manifested i n  Fig. (9 ) - a t  V=l- by ca l l i ng  €or 
Ze t o  be equal t o  zero a f a c t  which renders Green's 
function impossible t o  apply. 

(9) where 2, is 

- 50 
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Fig. (9) Optimal d i s tance  f o r  f i e l d  estimation 
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VI. STUDY CASE 

I k  is meant t o  ve r i fy  the a b i l i t y  of t he  Monte 
Carlo method, i n  general ,  and the  present ly  developed 
improvements, i n  pa r t i cu la r ,  t o  handle a t yp ica l  high 
voltage problem. The rod-to-plane gap, one of t he  most 
basic  arrangements i n  high voltage research, i s  chosen 
f o r  t h i s  purpose. This non-uniform f i e l d  configuration 
has been a su i t ab le  too l  f o r  experimental observation 
due t o  the loca l  confinement of prebreakdown ionizat ion 
around the s t ressed electrode. F i e ld  knowledge w i l l  
c e r t a in ly  help explain many gaseous ionizat ion phenom- 
ena and elucidate  the processes of gas breakdown. The 
solut ion i s  compared to  those given by the Charge 
simulation method and a l so  the  tank model experimental 
technique. 

A.  Gap Arrangement 

The rod-to-plane gap i s  seen i n  Fig. (10). The 
rod electrode is standardized a s  a cy l ind r i ca l  s h a f t  
with a hemispherical t i p  of equal diameter of 2. 

I 

Fig. (10) rod-to-plane gap 

Table I The po ten t i a l  and f i e l d  d i s t r ibu t ions  on the 
critical f i e l d  l i n e  f o r  G = 200 

istancc 
rom 
lane 

199.9 
199.8 
199.7 
199.6 
199.5 
199.4 
199.3 
199.2 
199.1 
199.0 

Charge simulation 
r e f .  [61 

V(P.U) EPP(P,u) 

0.9463 0.4884 
0.9015 0.4118 
0.8634 0.3528 
0.8305 0.3064 
0.8018 0.2691 
0.7765 0.2387 
0.7539 0.2136 
0.7336 0.1927 
0.7157 0.1749 
0.6985 0.1597 

.mprovedMonteCarlo method 

- 
ulp-u)  Ep(p.u) 

0.9467 0.4981 
0.9343 0.4119 
0.8657 0.3517 
0.8514 0.3040 
0.7946 0.2673 
0.8019 0.2359 
0.7612 0.2115 
0.7437 0.1904 
0.7287 0.1750 
0.7101 0.1601 

Table I1 Comparison of t he  po ten t i a l  calculated by 
three methods. For G=160 

Distance 
from 
plane 

159.9 
159.8 
159.7 
159.6 
159.5 
159.4 
159.3 
159.2 
159.1 
159.0 
158.0 
157 .O 
156.0 
155.0 

:harge simulation 
r e f .  [61 

0.9453 
0.8996 
0.8607 
0.8272 
0.7980 
0.7721 
0.7491 
0.7285 
0.7097 
0.6927 
0.5779 
0,5125 
0 -4680 
0.4349 

improved Monte 
Carlo method 

0.9567 
0.9133 
0.8567 
0.8567 
0.8033 
0.7667 
0.7700 
0.7267 
0.7200 
0.7167 
0.5733 
0.5233 
0.4967 
0.4400 

Tank 
model 

The Charge simulation method was applied t o  the study 
arrangement by Abou-Seada and Nasser [61. They used 
one point  charge located a t  the center  of t he  hemis- 
pherical  port ion of the boundary and a nine semi- 
i n f i n i t e  l i n e  charges located along the  a x i s  of the 
cy l ind r i ca l  portion. Also seven boundary po in t s  were 
selected.  

Meanwhile, a computer program is wri t ten which 
appl ies  t he  p r inc ip l e s  and recommendations reached i n  
t h i s  paper t o  improve the Monte Carlo appl icat ion.  A 
f loa t ing  random walk procedure was followed i n  which 
the  optimal spacing among neighbouring points  as deter- 
mined above i s  put  t o  use. 

In Table I it is shown t h a t  t he  r e s u l t s  of the 
Monte Carlo method are very close t o  those obtained by 
the Charge simulation method. The computing e f f o r t  
made during the  present  Monte Carlo appl icat ion i s  
r e l a t i v e l y  very small. Typically,  t he  determination of 
the po ten t i a l  and f i e l d  a t  any one point-near the rod 
t ip-required a t o t a l  of 100 walks equivalent t o  about 
2 seconds on a VAX-11/780 computer. 

In Table 11 a comparison is made among the  r e s u l t s  
taken from the  Charge &mulation method, the present 
approach, and those measured experimentally using a 
tank model f o r  a gap r a t i o  of 160 161. It appears t h a t  
the r e s u l t s  obtained with the present technique a r e  
even c lose r  t o  those of the tank model than the  results 
of t he  Charge simulation method. 

VII. CONCLUSIONS 

(1) The computational e f f o r t  expressed pr imari ly  by the 
number of s t eps  per  walk i s  found t o  be strongly 
dependent on several  f ac to r s ,  namely, t he  r e l a t i v e  
space po ten t i a l  a t  t he  locat ion i n  question, the 
degree of f i e l d  nonuniformity and walk termination 
dis tance.  

( 2 )  The maximum number of s t eps  per  walk is encountered 
a t  a r e l a t i v e  space po ten t i a l  of 0.5 and decreases 
towards zero when the po ten t i a l  approaches zero o r  
1 values. 

(3) The maximum number of s t eps  per walk increases 
l i n e a r l y  with the logarithm of the f i e l d  nonunf- 
f ormity f ac to r .  

( 4 )  The maximum number of s t eps  per  walk increases  
l i n e a r l y  with bhe logarithm of the  termination 
distance.  
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(5 )  The use of Green 's  funct ion g ives  d i r e c t  es t imates  
of f i e l d s  and al lows each random walk t o  c o n t r i b u t e  
d i r e c t l y  t o  es t imates  of t he  p o t e n t i a l  and f i e l d  
a t  more than one poin t .  

(6) The e r r o r  i n  the  est imated p o t e n t i a l  and f i e l d  of 
a neighbouring p o i n t  is  minimum a t  some optimal 
d i s t a n c e  between the  t a r g e t  p o i n t  r o  and t h a t  
neighbouring p o i n t  rp .  

( 7 )  The opt imal i ty  r e s u l t s  obtained with coaxia l  sys- 
tems are found t o  be very w e l l  appl icable  i n  o the r ,  
non-analyt ical ly  solvable ,  three-dimensional sys- 
tems such a s  a rod-plane gap. 

(8) Excel lent  agreement is obtained when the  r e s u l t s  of 
t he  present  technique a r e  compared t o  those of t he  
charge-simulation method as appl ied  t o  a hemi- 
s p h e r i c a l l y  capped rod-plane gap. 
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